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Abstract

This paper addresses the problem of power and sample size calculation for a stepwise multiple test
procedure (SD2PC) proposed in Tamhane et al. [2001. Multiple test procedures for identifying the maximum
safe dose. J. Amer. Statist. Assoc. 96, 835–843] to identify the maximum safe dose of a compound. A general
expression for the power of this procedure is derived. It is used to find the minimum overall power and
minimum power under the constraint that the dose response function is bounded from below by a linear
response function. It is shown that the two minima are attained under step and linear response functions,
respectively. The sample sizes necessary on the zero dose control and each of the positive doses to guarantee
a specified power requirement are calculated under these two least favorable configurations. A technique
involving a continuous approximation to the sample sizes is used to reduce the number of quantities that
need to be tabled, and to derive the asymptotically optimal allocation of the total sample size between the
zero dose and the positive doses. An example is given to illustrate use of the tables. Extensions of the basic
formulation are noted.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In Tamhane et al. (2001) (referred to as TDGW hereafter) we proposed three step-down (SD)
multiple test procedures (labeled there as SD1PC, SD2PC and SD1HC) to find the maximum safe
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dose (MAXSD) of a compound in relation to a zero dose control. These procedures control the
type I familywise error rate (FWE), which is the probability of declaring any unsafe dose as safe,
at a specified level �. In TDGW we investigated the power properties of the proposed procedures
via simulation. In this paper we derive analytical expressions for the power of SD2PC (which is a
preferred procedure for the reasons explained in the sequel). We use these expressions to calculate
the sample sizes necessary to guarantee a specified power requirement.

Practical applications of the MAXSD approach were described in TDGW. This problem arises
in toxicology experiments to evaluate safety of agricultural compounds where efficacy is not a
concern. The MAXSD approach was motivated in the first author’s collaborations with scientists
from DuPont.

The outline of the paper is as follows. In Section 2, we define the notation and formulate the
problem. The SD2PC procedure is briefly reviewed in Section 3. An expression for its power is
derived in Section 4. This expression is used to find the minimum overall power and minimum
power under the constraint that the dose response function is bounded from below by a linear
response function. It is shown that the two minima are attained under step and linear response
functions, respectively. The exact discrete optimization problem of finding the smallest total sam-
ple size under these two least favorable configurations to guarantee a specified power requirement
is stated and solved in Section 5. A continuous approximation to this problem for the minimum
overall power is stated and solved in Section 6. The solution from the continuous approximate
problem is used as an initial solution for the numerical search of the corresponding exact discrete
optimum. The continuous problem is also useful for deriving asymptotically optimal allocation of
the sample sizes between the zero dose control and positive doses. An example is given in Section
7. Finally, some extensions of the basic formulation are noted in Section 8. An evaluation of the
derivative of the power function needed in the continuous optimization problem is given in the
Appendix.

2. Problem formulation

We assume the usual homoscedastic normal theory one-way layout model with increasing doses
denoted by 0, 1, . . . , k, where 0 is the zero dose (control). The unknown dose means are denoted
by �i and the unknown common error variance by �2. A smaller �i (e.g., a lower yield of a crop
contaminated by a herbicide) is assumed to represent a more toxic response. The case where a
larger �i represents a more toxic response can be handled analogously.

We take ni observations, yij (1�j �ni), on dose i and compute the sample means yi and
the pooled sample variance s2 based on � = ∑k

i=0 ni − (k + 1) degrees of freedom (df). The
corresponding random variables Y i and S2 are distributed independently as N(�i , �

2/ni) and
�2�2

�/�, respectively.
We regard a dose as unsafe if it causes a decrease in mean yield below a specified percentage

(say, 10%) of the mean yield �0 at the zero dose level. More generally, we regard the ith dose
as unsafe if �i ���0 and as safe if �i > ��0 where � < 1 is specified, e.g., � = 0.90 for a 10%
decrease in the mean yield compared to �0. The maximum safe dose (MAXSD) for specified � is
defined as

MAXSD = max{i : �j > ��0 ∀j � i}. (2.1)

If a larger �i represents a more toxic response then � > 1. In that case, doses with �i ���0 are
regarded as unsafe and those with �i < ��0 are regarded as safe. The MAXSD is defined as
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MAXSD = max{i : �j < ��0 ∀j � i}. Note that the above definition assumes that �0 is > 0.
This is a reasonable assumption in most practical problems as the measurements are positive. If
necessary, a preliminary test could be performed to check it.

We want to guarantee that the probability that any unsafe dose is declared safe is no more than
a specified constant �. If ̂MAXSD denotes the estimated MAXSD then this requirement translates
to

P { ̂MAXSD > MAXSD}��. (2.2)

Now consider the family of hypothesis testing problems

H0i : �i ���0 vs. H1i : �i > ��0 (1� i�k). (2.3)

Here H0i states that the ith dose is unsafe and H1i states that the ith dose is safe. After testing the
hypotheses we set ̂MAXSD = max{i : H0j is rejected ∀j � i}. The error probability requirement
(2.2) is satisfied if we control the type I FWE at level �:

FWE = P {Any true H0i is rejected}�� (2.4)

for the family of hypotheses (2.3).
It was shown in Section 8 of TDGW that this requirement is satisfied if the null hypotheses

in (2.3) are tested in a step-down (SD) manner beginning with H01; if it is rejected then test
H02 and so on, each at level �, which is what SD2PC does. On the other hand, SD1PC and
SD1HC test

⋂k
j=iH0j ⊆ H0i in a step-down manner, each at level �. Under the assumption

of monotonicity, �0 ��1 � · · · ��k , we have H0i = ⋂k
j=iH0j . Therefore, SD1PC and SD1HC

procedures also control (2.2). However, if the means are not monotone then only SD2PC controls
this requirement as shown by Bauer (1997).

In the present paper we restrict attention to the SD2PC procedure because (i) as noted above,
it is valid even if the dose–response function is non-monotone, (ii) simulation studies reported in
TDGW showed that SD2PC generally has high power, especially under the linear dose–response
function, although its power can be very low under the step response function when the MAXSD
is high, (iii) it is very easy to apply and explain to a practitioner, and (iv) it can be readily extended
to non-normal setups, where statistics such as Mann–Whitney may be used for comparing each
dose with the zero dose control.

Specification of the power requirement for the hypothesis testing problem (2.3) entails specifi-
cation of two constants, � (0 < � < 1 − �) and 1 − � (� < 1 − � < 1). In analogy with definition
(2.1) of MAXSD, we specify the power requirement as follows:

P

{
Reject all false H0i with min

j � i
�j �(� + �)�0

}
�1 − �. (2.5)

Under monotonicity, this is equivalent to a more stringent requirement in which minj � i �j is
replaced by �i . As an example, suppose � = 0.90, � = 0.05 and 1 − � = 0.80. Then any dose
with mean �i > 0.90�0 is safe, but we want to guarantee that all consecutive doses with means
�i �0.95�0 are declared safe with probability at least 0.80.

We note that Horn and Vollandt (2002) have done sample size calculations for a similar setting
but for a formulation that uses an additive threshold constant in contrast to our multiplicative
constant �.
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3. SD2PC procedure

The SD2PC procedure is a SD testing procedure based on pairwise contrasts,yi−�y0 (1� i�k).
The corresponding t-statistics are

ti = yi − �y0

s

√
1/ni + �2/n0

(1� i�k).

SD2PC uses an �-level t-test at each step, beginning with the test of H01. Thus it rejects H01 if
t1 > t�,�, where t�,� is the upper � critical point of Student’s t with � df, and goes on to test H02.
If H01 is not rejected then testing stops and it is concluded that ̂MAXSD < 1, i.e., dose 1 itself is
not proven safe. In general, if H01, H02, . . . , H0i have been tested and rejected and if i < k then
H0,i+1 is tested next and rejected if ti+1 > t�,�; otherwise testing stops and it is concluded that

̂MAXSD = i.

4. Power of SD2PC procedure

Suppose that �i �(� + �)�0 for 1� i�m and �i < (� + �)�0 for i > m, so that effectively m is
the MAXSD as far as the power requirement (2.5) is concerned, which is then

P {Reject H0i for i = 1, 2, . . . , m}�1 − �. (4.1)

To write the power expression, introduce the following notation:

Zi = Y i − �Y 0 − (�i − ��0)

�
√

1/ni + �2/n0

(1� i�k) and U = S

�
.

Further let

�i = �i

�0
and ri = n0

ni

(1� i�k).

Then Z1, Z2, . . . , Zk have a k-variate standard normal distribution with correlations

	ij = Corr(Zi, Zj ) = �2√
(ri + �2)(rj + �2)

= 
i
j (1� i �= j �k), (4.2)

where


i = �√
ri + �2

(1� i�k),

and U = S/� ∼ √
�2
�/� independent of the Zi’s. In other words, Ti = Zi/U (1� i�k) have

a central k-variate t-distribution with the above correlation structure and � df. Then, for fixed
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m (1�m�k), the power expression (4.1) is given by

P

⎧⎪⎨
⎪⎩

Y i − �Y 0

S

√
1/ni + �2/n0

> t�,� (1� i�m)

⎫⎪⎬
⎪⎭

= P

⎧⎪⎨
⎪⎩

Zi

U
> t�,� − �i − ��0

S

√
1/ni + �2/n0

(1� i�m)

⎫⎪⎬
⎪⎭

= P

⎧⎪⎨
⎪⎩Zi > t�,�U − (�i − �)(�0/�)√

1/ni + �2/n0

(1� i�m)

⎫⎪⎬
⎪⎭

=
∫ ∞

0
P

⎧⎪⎨
⎪⎩−Zi � − t�,�u + (�i − �)(�0/�)√

1/ni + �2/n0

(1� i�m)

⎫⎪⎬
⎪⎭h�(u) du, (4.3)

where

h�(u) = 2(�/2)�/2

�(�/2)
u�−1 exp(−�u2/2), u�0

denotes the p.d.f. of U ∼ √
�2
�/�. Put

ci(u) = −t�,�u + (�i − �)(�0/�)√
1/ni + �2/n0

(1� i�m).

Then noting that the −Zi’s have the same joint distribution as the Zi’s, and by exploiting the
product correlation structure in (4.2), we can express the m-variate normal probability in the
last step of (4.3) as a univariate iterated integral (see Eq. (1.1a) in Appendix 3 of Hochberg and
Tamhane (1987)) leading to the following expression for power:

∫ ∞

0

⎧⎪⎨
⎪⎩
∫ ∞

−∞

m∏
i=1

�

⎡
⎢⎣
iz + ci(u)√

1 − 
2
i

⎤
⎥⎦(z) dz

⎫⎪⎬
⎪⎭h�(u) du, (4.4)

where �(·) and (·) are, respectively, the c.d.f. and the p.d.f. of the standard normal distribution.

4.1. Minimum overall power

From symmetry considerations, we will assume that the experiment is designed with n1 =n2 =
· · · = nk = n (say). Let n0/n = r . Suppose that the dose response function satisfies

�i �(� + �)�0, 1� i�m and �m+1 < (� + �)�0.

Then, since (4.4) is increasing in the �i , its minimum for fixed m (1�m�k) is attained when
�i = (� + �)�0 for i = 1, . . . , m. Thus the step response function is least favorable. Furthermore,
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the minimum over m is attained when m = k and it depends on � and �0/� only through their
product, denoted by � = �(�0/�). This minimum power is given by

Pk(n0, n, �, �) =
∫ ∞

0

{∫ ∞

−∞
�k

[

z + c(u)√

1 − 
2

]
(z) dz

}
h�(u) du, (4.5)

where we have put

c(u) = −t�,�u + �√
1/n + �2/n0

and 
 = �√
r + �2

. (4.6)

4.2. Minimum power under linear lower bound on the dose response function

Suppose that the dose response function is bounded below by a linear function:

�i ��0 − i� (1� i�k)

for some � > 0. For fixed m(1�m�k) consider the restricted parameter space � = ⋃k
m=1�m,

where

�m = {µ = (�0, �1, . . . , �k) : �i ��0 − i��(� + �)�0 (1� i�m),

�m+1 < (� + �)�0}.
It is readily seen that for µ ∈ �m, power (4.3) is minimized when �i = �0 − i� and � is as large
as possible, i.e.,

� = {1 − (� + �)}�0

m
.

(The values of �i for i > m are irrelevant.) Thus the linear response function is least favorable in
this case. Then the power expression becomes

P

⎧⎪⎨
⎪⎩−Zi � − t�,�U + {(1 − �) − [1 − (� + �)](i/m)}(�0/�)√

1/n + �2/n0

(1� i�m)

⎫⎪⎬
⎪⎭

=
∫ ∞

0

{∫ ∞

−∞

m∏
i=1

�[bi,m(z, u)](z) dz

}
h�(u) du, (4.7)

where

bi,m(z, u) = 
z + ci,m(u)√
1 − 
2

(1� i�m)

and

ci,m(u) = −t�,�u + {(1 − �) − [1 − (� + �)](i/m)}(�0/�)√
1/n + �2/n0

(1� i�m).
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Since i/m�(i + 1)/(m + 1), it follows that for every fixed (z, u), bi,m(z, u)�bi+1,m+1(z, u).
Hence

m∏
i=1

�[bi,m(z, u)]�
m∏

i=1

�[bi+1,m+1(z, u)] =
m+1∏
i=2

�[bi,m+1(z, u)]

�
m+1∏
i=1

�[bi,m+1(z, u)].

Thus (4.7) is minimized when m=k. The final minimum power expression for the linear response
function depends on both � and (�0/�), and is given by

Pk(n0, n, �, �, �0/�) =
∫ ∞

0

{∫ ∞

−∞

k∏
i=1

�

[

z + ci,k(u)√

1 − 
2

]
(z) dz

}
h�(u) du, (4.8)

where 
 is as defined in (4.6) and

ci,k(u) = −t�,�u + {(1 − �) − [1 − (� + �)](i/k)}(�0/�)√
1/n + �2/n0

(1� i�k).

To evaluate (4.8), the quantity �0/�, which is the inverse of the coefficient of variation for the
zero dose, needs to be specified or at least a lower bound on it. (To evaluate (4.5), only the product
� = �(�0/�) needs to be specified.) The larger the coefficient of variation, the smaller the power
and hence the larger the sample size needed to guarantee a specified power requirement.

5. Exact discrete optimization problem

The exact optimization problem to be solved is the following: For given k and specified
�, �, (�0/�), � and 1 − �,

Minimize N = n0 + kn subject to (4.5) or (4.8)�1 − �.

As noted before, in case of the overall minimum power given by (4.5), one need not specify
� and (�0/�) separately, but only � = �(�0/�). One can use numerical search to solve this
optimization problem. However, it can be very time consuming and laborious. Numerical search
can be accelerated if we know the optimum value of the ratio r = n0/n because then we only
need to find the smallest N so that the expression (4.5) or (4.8) is �1 − �. This is an easy trial
and error exercise because the minimum power is a strictly increasing function of N.

In the next section we find the optimum value of r by solving an approximate continuous problem
for the overall minimum power case. (The constrained minimum under a linear response lower
bound case could be studied analogously, but it is analytically far more involved.) This continuous
approximation also has the advantage that it obviates the need to compute N (and associated n0
and n) for each specified value of � = �(�0/�); rather it is only necessary to compute a quantity
� defined in (6.1) and the associated r. We are also able to study the asymptotic behavior of
optimum r and show that r → �

√
k (which is a simple extension of Dunnett’s (1955) square root

allocation rule) as � → ∞. The optimum r found by solving the approximate continuous problem
is used as a starting solution for numerical search to find the exact discrete optimum solution to
the optimization problem. The corresponding optimum sample sizes are given in Tables 1 and 2
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Table 1
Exact (discrete) optimum sample sizes for step response (� = 0.05)

k 1 − � � � N n0 n r

3 0.70 0.25 0.75 762 210 184 1.141
0.80 790 229 187 1.225
0.85 819 246 191 1.288
0.90 848 263 195 1.349

0.50 0.75 192 54 46 1.174
0.80 199 58 47 1.234
0.85 206 62 48 1.292
0.90 213 66 49 1.347

0.80 0.25 0.75 917 260 219 1.187
0.80 952 283 223 1.269
0.85 987 303 228 1.329
0.90 1023 327 232 1.409

0.50 0.75 231 66 55 1.200
0.80 240 72 56 1.286
0.85 248 77 57 1.351
0.90 258 84 58 1.448

0.90 0.25 0.75 1159 337 274 1.230
0.80 1204 367 279 1.315
0.85 1249 394 285 1.382
0.90 1296 426 290 1.469

0.50 0.75 292 85 69 1.232
0.80 303 93 70 1.329
0.85 315 99 72 1.375
0.90 326 107 73 1.466

4 0.70 0.25 0.75 1038 250 197 1.269
0.80 1072 268 201 1.333
0.85 1106 290 204 1.422
0.90 1141 309 208 1.486

0.50 0.75 261 65 49 1.327
0.80 269 69 50 1.380
0.85 278 74 51 1.451
0.90 287 79 52 1.519

0.80 0.25 0.75 1230 306 231 1.325
0.80 1272 332 235 1.413
0.85 1314 358 239 1.498
0.90 1357 385 243 1.584

0.50 0.75 309 77 58 1.328
0.80 320 84 59 1.424
0.85 330 90 60 1.500
0.90 341 97 61 1.590

0.90 0.25 0.75 1528 396 283 1.399
0.80 1581 429 288 1.490
0.85 1635 463 293 1.580
0.90 1690 498 298 1.671
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Table 1 (continued)

k 1 − � � � N n0 n r

0.50 0.75 384 100 71 1.408
0.80 397 109 72 1.514
0.85 411 119 73 1.630
0.90 425 125 75 1.667

5 0.70 0.25 0.75 1318 283 207 1.367
0.80 1357 302 211 1.431
0.85 1397 327 214 1.528
0.90 1437 347 218 1.592

0.50 0.75 331 71 52 1.365
0.80 341 76 53 1.434
0.85 351 81 54 1.500
0.90 361 91 54 1.685

0.80 0.25 0.75 1545 350 239 1.464
0.80 1592 377 243 1.551
0.85 1640 405 247 1.640
0.90 1689 434 251 1.729

0.50 0.75 388 88 60 1.467
0.80 400 95 61 1.557
0.85 412 102 62 1.645
0.90 425 110 63 1.746

0.90 0.25 0.75 1896 451 289 1.561
0.80 1957 487 294 1.656
0.85 2018 523 299 1.749
0.90 2081 561 304 1.845

0.50 0.75 476 116 72 1.611
0.80 491 121 74 1.635
0.85 507 132 75 1.760
0.90 522 142 76 1.868

6 0.70 0.25 0.75 1603 307 216 1.498
0.80 1647 333 219 1.521
0.85 1692 354 223 1.587
0.90 1736 380 226 1.681

0.50 0.75 403 79 54 1.463
0.80 414 84 55 1.527
0.85 425 89 56 1.589
0.90 437 95 57 1.667

0.80 0.25 0.75 1862 386 246 1.569
0.80 1916 416 250 1.664
0.85 1970 446 254 1.756
0.90 2024 476 258 1.845

0.50 0.75 468 102 61 1.672
0.80 481 109 62 1.758
0.85 495 111 64 1.734
0.90 509 119 65 1.831



2172 A.C. Tamhane et al. / Journal of Statistical Planning and Inference 136 (2006) 2163–2181

Table 1 (continued)

k 1 − � � � N n0 n r

0.90 0.25 0.75 2267 503 294 1.711
0.80 2335 541 299 1.809
0.85 2404 580 304 1.908
0.90 2474 620 309 2.006

0.50 0.75 569 125 74 1.689
0.80 586 136 75 1.813
0.85 603 247 76 1.914
0.90 620 158 77 2.052

for k = 3, 4, 5, 6, 1 − � = 0.70, 0.80, 0.90, �0/� = 5, 10, � = 0.75, 0.80, 0.85, 0.90, � = 0.05
(which corresponds to � = 0.25, 0.50) and � = 0.05. These tables are self-explanatory. Their use
is illustrated in Section 7.

6. Approximate continuous optimization problem

To simplify the optimization problem we will assume �=∞ so that the power expression (4.5)
for step response reduces to a single integral. Furthermore, we define the quantity

� = �
√

N =
(

��0

�

)√
N , (6.1)

which we treat as a continuous variable along with r. Thus the optimization problem for the step
response case can be stated as: For given k and specified �, � and 1 − �, find the smallest value
of � and the associated value of r so that∫ ∞

−∞
�k

[

z + c√
1 − 
2

]
(z) dz = 1 − � (6.2)

where

c = −z� + �
√

r√
(k + r)(r + �2)

and 
 = �√
r + �2

;

here z� = t∞,� is the upper � critical point of the standard normal distribution.
To solve this problem, first fix r and solve (6.2) for c or equivalently �. An explicit solution for

c can be obtained as follows. Note that the integral in (6.2) equals P {Z1 �c, Z2 �c, . . . , Zk �c},
where Z1, Z2, . . . , Zk have a k-variate standard normal distribution with common correlation

2 =�2/(r +�2). Therefore c is the upper � critical point of max1� i �kZi ; we denote this critical
point by zk,
2,�. Dunnetts (1989) program can be used to calculate c = zk,
2,�. Then

� = �
√

N = (z� + zk,
2,�)

√
(k + r)(r + �2)

r
,
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Table 2
Exact (discrete) optimum sample sizes for linear response (� = 0.05, � = 0.05)

k 1 − � � � N n0 n r

3 0.70 0.25 0.75 465 129 112 1.152
0.80 489 141 116 1.216
0.85 516 156 120 1.300
0.90 587 182 135 1.348

0.50 0.75 118 34 28 1.214
0.80 123 36 29 1.241
0.85 130 40 30 1.333
0.90 146 47 33 1.424

0.80 0.25 0.75 614 176 146 1.205
0.80 639 189 150 1.260
0.85 668 206 154 1.338
0.90 733 235 166 1.416

0.50 0.75 155 44 37 1.189
0.80 161 50 37 1.351
0.85 168 54 38 1.421
0.90 184 61 41 1.488

0.90 0.25 0.75 849 246 201 1.224
0.80 884 269 205 1.312
0.85 919 292 209 1.397
0.90 978 321 219 1.466

0.50 0.75 214 64 50 1.280
0.80 222 69 51 1.353
0.85 231 75 52 1.442
0.90 246 81 55 1.473

4 0.70 0.25 0.75 580 140 110 1.273
0.80 607 155 113 1.372
0.85 655 171 121 1.413
0.90 761 209 138 1.514

0.50 0.75 145 37 27 1.370
0.80 152 40 28 1.429
0.85 165 45 30 1.500
0.90 191 55 34 1.618

0.80 0.25 0.75 755 191 141 1.355
0.80 786 206 145 1.421
0.85 832 228 151 1.510
0.90 936 268 167 1.605

0.50 0.75 190 50 35 1.429
0.80 198 54 36 1.500
0.85 209 57 38 1.500
0.90 235 67 42 1.595

0.90 0.25 0.75 1043 271 193 1.404
0.80 1081 293 197 1.487
0.85 1127 319 202 1.579
0.90 1223 359 216 1.662
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Table 2 (continued)

k 1 − � � � N n0 n r

0.50 0.75 262 70 48 1.458
0.80 272 76 49 1.551
0.85 284 80 51 1.569
0.90 308 92 54 1.704

5 0.70 0.25 0.75 692 147 109 1.349
0.80 733 163 114 1.430
0.85 798 188 122 1.541
0.90 939 229 142 1.613

0.50 0.75 173 38 27 1.407
0.80 183 43 28 1.536
0.85 200 50 30 1.667
0.90 235 60 35 1.714

0.80 0.25 0.75 895 205 138 1.486
0.80 936 221 143 1.545
0.85 1000 250 150 1.667
0.90 1141 296 169 1.751

0.50 0.75 224 54 34 1.588
0.80 234 59 35 1.686
0.85 252 62 38 1.632
0.90 286 76 42 1.810

0.90 0.25 0.75 1232 292 188 1.553
0.80 1277 317 192 1.651
0.85 1338 348 198 1.758
0.90 1472 397 215 1.847

0.50 0.75 310 75 47 1.596
0.80 321 81 48 1.688
0.85 336 91 49 1.857
0.90 370 100 54 1.852

6 0.70 0.25 0.75 806 158 108 1.463
0.80 860 176 114 1.544
0.85 945 201 124 1.621
0.90 1121 245 146 1.678

0.50 0.75 202 40 27 1.481
0.80 215 47 28 1.679
0.85 237 51 31 1.645
0.90 281 65 36 1.806

0.80 0.25 0.75 1033 217 136 1.596
0.80 1085 239 141 1.695
0.85 1171 265 151 1.755
0.90 1347 321 171 1.877

0.50 0.75 259 55 34 1.618
0.80 272 62 35 1.771
0.85 294 72 37 1.946
0.90 339 81 43 1.884
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Table 2 (continued)

k 1 − � � � N n0 n r

0.90 0.25 0.75 1415 311 184 1.690
0.80 1469 341 188 1.814
0.85 1549 273 196 1.903
0.90 1721 431 215 2.005

0.50 0.75 356 80 46 1.739
0.80 369 87 47 1.851
0.85 389 95 49 1.939
0.90 433 109 54 2.019

and the integral in (6.2) is a function of r alone. We denote it by �(r), and find the optimum value
of r by setting

�′(r) = d�(r)

dr
= 0.

In Appendix we show, using the same methods as in Bechhofer (1969), that

�′(r) = − �k(k − 1)
(1 − 
2)r−3/2√
8�(1 + 
2)



(
c

√
2

1 + 
2

)

× �k−2

⎛
⎝c

√
1 − 
2

(1 + 
2)(1 + 2
2)

∣∣∣∣ 
2

1 + 2
2

⎞
⎠+ k

√
1 − 
2

2


× [
d − �c(1 − 
2)r−3/2](c)�k−1

⎛
⎝c

√
1 − 
2

1 + 
2

∣∣∣∣ 
2

1 + 
2

⎞
⎠ , (6.3)

where �k(x|	) denotes the equicoordinate c.d.f. at point x of a k-variate standard normal distri-
bution with common correlation 	, and

d = �cr−3/2



+ z�

�2

r2

(
1 + �2

r

)−1/2

− �(k + r)−3/2. (6.4)

The solution to the equation �′(r) = 0 is substituted in 
 = �/
√

r + �2 to find a new value of
c=zk,
2,� and the process is iterated until convergence is reached. The solutions to the continuous
optimization problem are given in Table 3 for the same values of k, �, 1 − � and � as in Tables 1
and 2. Use of this table is illustrated in Section 7.

It may be noted from Table 3 that as � = �
√

N increases, r approaches �
√

k. This fact can be
shown analytically as follows. As � and c → ∞, the first term in the expression for �′(r) goes to
zero faster than the second term because c

√
2/(1 + 
2) < c and hence (c

√
2/(1 + 
2)) > (c).

As a result, the second term is the dominant one. Therefore, for large c, the solution to the equation
�′(r) = 0 can be approximated by the solution to the equation


d − �c(1 − 
2)r−3/2 = 0, (6.5)
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Table 3
Approximate (continuous) optimum sample sizes for step response case (� = 0.05)

k 1 − � � � r

3 0.70 0.75 6.883 1.137
0.80 7.009 1.210
0.85 7.135 1.282
0.90 7.260 1.354

0.80 0.75 7.556 1.182
0.80 7.698 1.258
0.85 7.840 1.334
0.90 7.982 1.409

0.90 0.75 8.498 1.228
0.80 8.662 1.307
0.85 8.826 1.386
0.90 8.990 1.465

4 0.70 0.75 8.032 1.257
0.80 8.162 1.336
0.85 8.292 1.414
0.90 8.422 1.492

0.80 0.75 8.747 1.330
0.80 8.894 1.415
0.85 9.041 1.498
0.90 9.187 1.581

0.90 0.75 9.752 1.400
0.80 9.921 1.490
0.85 10.090 1.579
0.90 10.259 1.668

5 0.70 0.75 9.056 1.347
0.80 9.190 1.429
0.85 9.323 1.510
0.90 9.456 1.590

0.80 0.75 9.807 1.454
0.80 9.957 1.544
0.85 10.108 1.634
0.90 10.258 1.722

0.90 0.75 10.866 1.552
0.80 11.039 1.650
0.85 11.212 1.748
0.90 11.384 1.845

6 0.70 0.75 9.992 1.414
0.80 10.129 1.497
0.85 10.266 1.579
0.90 10.402 1.661

0.80 0.75 10.774 1.561
0.80 10.927 1.656
0.85 11.080 1.750
0.90 11.233 1.843
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Table 3 (continued)

k 1 − � � � r

0.90 0.75 11.881 1.687
0.80 12.057 1.793
0.85 12.232 1.898
0.90 12.407 2.003

where d is given by (6.4). Now for large c and hence large �,

d ≈ �cr−3/2



− �(k + r)−3/2 and c ≈ �

√
r√

(k + r)(r + �2)

.

Substituting these approximations and 
 = �/
√

r + �2 in (6.5), we obtain

��

r

√
(k + r)(r + �2)

− ��(k + r)−3/2√
r + �2

− ��√
(k + r)(r + �2)3

= ��√
(k + r)(r + �2)

[
1

r
− 1

k + r
− 1

�2 + r

]

= 0,

the solution to which can be easily checked to be r = �
√

k.
This approximately optimum value of r can be shown to minimize

Var(Y i − �Y 0) = �2

(
1

n
+ �2

n0

)
.

Putting n0 = rn and hence n = N/(k + r), we see that, for fixed total sample size N, we need to
minimize (k + r)(1 + �2/r), and the minimizing value is r = �

√
k.

7. Example

Suppose that k = 5 doses are to be compared to a zero dose control to find the MAXSD. We
do not assume any knowledge of the shape of the response function, and therefore use the step
response as the least favorable configuration. The following quantities are specified: �=0.80, �=
0.05, �=0.05, 1−�=0.70 and �0/�=10, so �=(0.05)(10)=0.50. Then from Table 1, the exact
discrete optimum sample sizes are found to be n0 = 76, n= 53 and N = 341. Here n0/n= 1.434,
which is not very close to the asymptotically optimal allocation �

√
k = 1.789.

Let us see how these sample sizes compare with those computed from Table 3. For k = 5, � =
0.80, � = 0.05, 1 − � = 0.70, we find that � = 9.190 and r = 1.429. Therefore

N =
(

�

�

)2

=
(

9.190

0.50

)2

= 338,
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which gives

n = N

k + r
= 338

5 + 1.429
= 53 and n0 = N − kn = 73.

We see that these sample sizes are quite close to those obtained from Table 1, but are slightly
smaller. This will generally be the case because the continuous approximation assumes that � is
known which results in slightly smaller sample sizes. However, the differences are not appreciable
especially if N is large.

For the linear response case, from Table 2 we find that n0 = 43, n = 28 and N = 183. Note that
the sample sizes are much smaller in this case.

8. Extensions

In Section 4.2 we assumed that �i ��0 − i�. This linear lower bound implicitly assumes that
the doses di are equispaced. A more general approach might be to incorporate the actual dose
values in this lower bound, e.g., assume that

�i ��0 − (di − d0)� (1� i�k),

where � > 0. We refer to this lower bound as the generalized linear response. Alternatively, one
could assume an exponential response lower bound:

�i ��0(1/�)di−d0 ⇐⇒ ln �i � ln �0 − (di − d0) ln � (1� i�k),

where ��1.
First consider the generalized linear response case. The definitions of �m and � can be modified

in an obvious manner. Then for µ ∈ �m, the power is minimized when

� = [1 − (� + �)]�0

dm − d0
.

If the sequence {di −d0, i=1, 2, . . . , k} is log-concave, i.e., if (di −d0)/(di+1 −d0) is increasing
in i, then the minimum power is given by (4.7), where i/k in the definition of ci,k(u) must be
replaced by (di − d0)/(dk − d0).

For the exponential case, �m is given by

�m = {(�0, �1, . . . , �k) : �i ��0(1/�)di−d0 (1� i�m), �m+1 < (� + �)�0}.
The power can be shown to be minimized when 1/� = (� + �)1/(dm−d0). Again, if the sequence
{di − d0, i = 1, 2, . . . , k} is log-concave then the minimum power is given by (4.7) with

ci,k(u) = −t�,� + {[(� + �)
di−d0
dk−d0 − �](�0/�)}/

√
1/n + �2/n0.

Power and sample size calculations can be done under these dose response functions by simple
modifications in our computer programs. We can provide the programs to anyone interested.

This paper has given a method to compute the sample size for the SD2PC step-down multiple
test procedure for finding the maximum safe dose of a compound. The method is based on the least
favorable configuration approach. Therefore the resulting sample sizes may be too conservative
for practical applications. To resolve this problem, a Bayesian approach can be adopted by putting
prior distributions on the unknown parameters. However, this approach faces analytical difficulties
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as well as the fact that adequate previous knowledge is often lacking to specify full priors. A way
out of both these difficulties is to specify a discrete prior distribution on the MAXSD itself, i.e.,
one could specify prior probabilities p1, p2, . . . , pk , where pm is the probability that the mth dose
is MAXSD (1�m�k). Then instead of using the power expressions (4.5) or (4.7), which use
MAXSD = k as the LFC, we will obtain the weighted averages of the corresponding expressions
for different values of MAXSD. The simplest prior is the uniform prior: p1 =p2 =· · ·=pk =1/k.
We plan to use this uniform prior to compute the required sample sizes and compare them with
the sample sizes reported here using the LFC approach. These calculations will be reported in a
future paper.
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Appendix A. Evaluation of the derivative �′(r)

For � = ∞ the minimum power expression, �(r), for the step response function is given by
(6.2). Taking its derivative with respect to r, we get

�′(r) = k

∫ ∞

−∞
�k−1

[

z + c√
1 − 
2

] [
d

dr

(

z + c√
1 − 
2

)]


(

z + c√
1 − 
2

)
(z) dz.

First calculate,

d

dr

(

z + c√
1 − 
2

)
= d

dr

⎛
⎜⎝�z/

√
r + �2 − z� + �

√
r/(k + r)(r + �2)√

1 − �2/(r + �2)

⎞
⎟⎠

= d

dr

(
�z − z�

√
r + �2 + �

√
r/(k + r)√

r

)

= d

dr

⎛
⎝ �z√

r
− z�

√
1 + �2

r
+ �√

k + r

⎞
⎠

= − 1

2
�zr−3/2 + 1

2
z�

(
1 + �2

r

)−1/2
�2

r2 − 1

2
�(k + r)−3/2.

Put

y = 
z + c√
1 − 
2

.
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Then the above expression becomes

d

dr

(

z + c√
1 − 
2

)
= − �r−3/2

√
1 − 
2

2

y

+ �cr−3/2

2

+ 1

2
z�

(
1 + �2

r

)−1/2
�2

r2 − 1

2
�(k + r)−3/2.

Substitute this expression in �′(r) to obtain

�′(r) = k

∫ ∞

−∞
�k−1(y)(y)∗(y)

√
1 − 
2




×
[
−�r−3/2

√
1 − 
2

2

y + �cr−3/2

2


+1

2
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r

)−1/2
�2
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2
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⎤
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⎫⎬
⎭B,

where

∗(y) = 

(
y
√

1 − 
2 − c




)
, A =

∫ ∞

−∞
y�k−1(y)(y)∗(y) dy and

B =
∫ ∞

−∞
�k−1(y)(y)∗(y) dy.

We now evaluate A and B. Integrating by parts in A with u = �k−1(y)∗(y) and dv = y(y) dy,
we find that

A = −1 − 
2


2 A + c
√

1 − 
2


2 B + (k − 1)C,

where

C =
∫ ∞

−∞
�k−2(y)2(y)∗(y) dy.

So,

A = c
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and

2(y)∗(y) = 1√
2�



(
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√
2

1 + 
2

)


⎛
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1 + 
2



y − c




√
1 − 
2

1 + 
2

⎞
⎠ .

Using the above relations we get

B = (c)

∫ ∞

−∞
�k−1(y)

(
y − c

√
1 − 
2




)
dy.

Let

x = y − c
√

1 − 
2



⇒ y = 
x + c

√
1 − 
2 and dy = 
 dx.

Then

B = (c)
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and

C = 1√
2�
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⎠ .

Combining the expressions for A, B and C, and substituting them in the last expression for �′(r)
we get the final expression (6.3).
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